https://ogma.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Biochar built soil carbon over a decade by stabilizing rhizodeposits https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:34657 Tue 03 Sep 2019 18:27:15 AEST ]]> Biochar built soil carbon over a decade by stabilizing rhizodeposits https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:30741 13CO2 pulse labelling of ryegrass was used to monitor belowground C allocation, SOC priming, and stabilization of root-derived C for a 15-month period—commencing 8.2 years after biochar (Eucalyptus saligna, 550 °C) was amended into a subtropical ferralsol. We found that field-aged biochar enhanced the belowground recovery of new root-derived C (13C) by 20%, and facilitated negative rhizosphere priming (it slowed SOC mineralization by 5.5%, that is, 46 g CO2-C m−2 yr−1). Retention of root-derived 13C in the stable organo-mineral fraction (<53 μm) was also increased (6%, P < 0.05). Through synchrotron-based spectroscopic analysis of bulk soil, field-aged biochar and microaggregates (<250 μm), we demonstrate that biochar accelerates the formation of microaggregates via organo-mineral interactions, resulting in the stabilization and accumulation of SOC in a rhodic ferralsol.]]> Sat 24 Mar 2018 07:39:28 AEDT ]]>